Statistics

Lecture 17

Feb 19-8:47 AM

AAA claims that prop. of all workers in DTLA carpool to work is below 12%.

$$
n=352 \quad P<.12
$$

In a survey of 352 workers, 10% of them were carpooling to work. $x=352(.1)=35.2$ use $\alpha=.02$ to test the claim.

$$
x=36
$$

$H_{0}: P \geq .12$
$H_{1}: p<.12$
CTS $Z=-1.023$
P -value $P=.153 \sqrt{ }$
1-Prop Z Test $P_{0}=12$
$x: 36$
$n: 352$
CTS is in NCR
Prop $<P_{0}$
Ho valid, Hz invalid
P-value $>\propto$ Invalid claim
If we choose $\alpha=.2$ Reject the claim

$$
\begin{array}{rl}
P \text { - Value } \leq \alpha \\
.153 & .2
\end{array} \quad \begin{aligned}
& \text { Ho invalid } \\
& \\
& \\
& \\
& \\
& \text { claim tain }
\end{aligned}
$$

Feb 14-4:38 PM

Given CTS $Z=-1.023$, LTT, find P -Value

College claims that $\frac{\text { at most } 60 \%}{p<.6}$ of all students like online classes.
 $n=585$
I randomly selected 585 students and 63% of them liked online classes.

$$
\begin{gathered}
x=585(.63)=368.55 \\
x=369
\end{gathered}
$$

No $\alpha \rightarrow$ use . 05 Test the claim.
$H_{0}: P \leq .6$ claim

$$
H_{1}: P>.6 \text { BT }
$$

CTS $Z=1.519$
P value $P=.064$
1-Prop Z Test

$$
P_{0}: .6
$$

$$
x: 369
$$

$n: 585$
Prop $>P_{0}$
If we choose a to be

P-value $\leq \alpha$
CTS is in NCR

$Z=$ inuNorm $(.95,0,1)$
H_{0} valid, H_{1} invalid
$\underset{.064}{P \text { - value }}>\underset{.05}{\alpha}>$ valid claim FTR the
claim claim

$$
.07, .08, .09, .1, \ldots
$$

P-value $\leq \alpha \quad$ Ho invalid \rightarrow invalid claim
Reject the claim
Since H_{0} is valid
If we reject H_{0}, then we have made type I error.

Feb 14-4:54 PM

CTS $z=7.519$, RTT, find p-value.

Feb 14-5:10 PM

College claims the mean age of all students is 30 Yrs. $\mu=30$

I randomly selected 40 students, their mean age was 32.5 Yrs. $n=40 \quad \bar{x}=32.5$

It is known that standard deviation of ages of all Students is 8.5 Yrs. $\sigma=8.5$
use $\alpha=\cdot 1$ to test the claim.

Math dept. claims the mean of all Final exams is more than 75 . $\mu>75$

I took a sample of 30 final exams, their mean Score was 78. $n=30, \bar{x}=78$

Assume Standard deviation of all final exam Scores is $10 \quad \sigma=10$

Test the claim using $\alpha=.1$.

$$
H_{0}: \mu \leq 75
$$

Hf: $\mu>75$ claim, RTT
CTS $z=1.643$
P-value $P=.050$ Z-Test
inst:

$\mu_{0}: 75$
$\sigma=70$
$\bar{x}=78$
$n=30$
$\mu>\mu_{0}$
CTS is in CR
H_{0} invalid H_{1} valid P-value $\leq \alpha$

If $a=.04, .03, .02,01$
valid claim
FTR the
Pe value $>\alpha$ claim
Ho valid, He invalid Reject the claim

Feb 14-5:28 PM

Feb 14-5:56 PM

AAA claims the mean speed of all Cars on Certain FWY is below $70 \mathrm{mph} . \mu<70$

A Sample of 10 cars on that freeway had a mean speed of 66 mph with stand. Nev of 8 mph . $n=10, \bar{x}=66, S=8$ σ unknown
Test the claim. CV t LIT NON
$H_{0}: \mu \geq 70$
$d f=n-1=9 \quad .05$
Hf: $\mu<70$ claim, LTT

$\bar{x}=66 \quad$ CTS is in NCR
$S=8$
H_{0} valid, Hz invalid
$n=10$
P-value $>\alpha$ L Invalid $\mu<\mu_{0}$ LIT claim

Suggest a value for α to reverse the conclusion P-value $\leq \alpha$

$$
.074 \leq \alpha
$$

Reject the claim

Feb 14-6:18 PM

Given CTS $t=-1.581, d f=9$, LTT find P-value.

$=\operatorname{tcdf}(-$ - $999,-1.581,9) \quad \sigma$ unknown

$$
=.074
$$

SG 25 \& SaGE 26

